# Recombinant Activated Factor VII (rFVIIa): Characterization, Manufacturing, and Clinical Development

Birgit Jurlander, M.D., Ph.D., Lars Thim, D.M.Sc., Ph.D., Niels K. Klausen, Ph.D., Egon Persson, Ph.D., Marianne Kjalke, Ph.D., Per Rexen, M.Sc., Tom B. Jørgensen, B.Sc., Per B. Østergaard, M.Sc., Elisabeth Erhardtsen, D.V.M., and Søren E. Bjørn, M.Sc.

#### **ABSTRACT**

Recombinant activated coagulation factor VII (rFVIIa) (NovoSeven®) was developed for treatment of bleeding in hemophilia patients with inhibitors (antibodies) against factors VIII or IX. rFVIIa initiates the coagulation cascade by binding to tissue factor at the site of injury and causes the formation of sufficient amounts of thrombin to trigger coagulation. Patients with a variety of other coagulation deficiencies than hemophilia characterized by an impaired thrombin generation and life-threatening bleeding have been reported as successfully treated with rFVIIa. Data are now entered into clinical registries established to further monitor this experimental treatment with NovoSeven®. rFVIIa is produced free of any added human protein. The amino acid sequence of rFVIIa is identical to plasma-derived FVIIa (pdFVIIa). Posttranslational modifications (i.e., γcarboxylations, N- and O-glycosylations) are qualitatively identical in pdFVIIa and rFVIIa although some quantitative differences exist. The activities of rFVIIa and pdFVIIa are indistinguishable. Manufacturing of rFVIIa involves expression in baby hamster kidney (BHK) cells followed by purification, including three ion-exchange and one immunoaffinity chromatography steps. The last anion-exchange chromatography step ensures completion of the autoactivation of recombinant factor VII (rFVII) to rFVIIa. This review describes the mechanism of action, characterization, manufacturing, and preclinical and current clinical evidence for the efficacy and safety of rFVIIa.

**KEYWORDS:** Factor VIIa, rFVIIa, recombinant expression, in vitro activation, biological activity

Objectives: Upon completion of this article, the reader should be able to (1) realize the structural and enzymatic similarities of plasma-derived factor VIIa (pdFVIIa) and recombinant factor VIIa (rFVIIa) and (2) describe the mechanism of action of rFVIIa. Accreditation: Tufts University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. TUSM takes full responsibility for the content, quality, and scientific integrity of this continuing education activity.

Seminars in Thrombosis and Hemostasis, volume 27, number 4, 2001. Address for correspondence and reprint requests: Birgit Jurlander, MD, Ph.D., Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark. E-mail: bju@novonordisk.com. ¹IO Biopharm, ²Protein Chemistry, ³Protein Drug Delivery, ⁴Vascular Biochemistry, ³Factor VIIa Bulk Production, <sup>6</sup>Regulatory Affairs, and <sup>7</sup>Clinical Development, Novo Nordisk A/S, Lyngby, Denmark. Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662. 0094-6176,p;2001,27,04,373,384,ftx,en;sth00737x.

373

Credit: Tufts University School of Medicine designates this education activity for a maximum of 1.0 hours credit toward the AMA Physicians Recognition Award in category one. Each physician should claim only those hours that he/she actually spent in the educational activity.

R ecombinant activated coagulation factor VII (rFVIIa) (eptacog alpha) is the generic name for Novo-Seven®. rFVIIa is now registered in more than 50 countries worldwide for the treatment of spontaneous and surgical bleeding episodes in patients with inhibitors (antibodies) against factor VIII (FVIII) or factor IX (FIX). $^{1-7}$ 

During the last decades, the treatment of congenital and acquired hemophilia patients has progressed from the use of cryoprecipitate to purified plasma-derived (pd) factor concentrates. Furthermore, the development of highly purified recombinant coagulation factors, free of human viruses, has provided a major step in improvement of safety and convenience for these patients.<sup>8-10</sup>

Effective treatment of life- and limb-threatening bleeding episodes in inhibitor patients is still a major challenge. Surgery presents a particular challenge to hemostasis management, and, until recently, inhibitor patients were often denied elective surgical procedures.

Clinical trials have demonstrated that administration of rFVIIa in doses of 90  $\mu$ g/kg every 2 hours effectively (80 to 90%) and safely ensures hemostasis in hemophilia patients with inhibitors. <sup>1,2,5-7,11</sup> In addition, FVII-deficient patients have been successfully treated with rFVIIa in doses of 20 to 30 ( $\mu$ g/kg every 6 hours. <sup>12-14</sup> Inhibitor- and FVII-deficient patients treated

with rFVIIa can undergo major surgery with minimal risk of uncontrolled hemorrhage and complications.<sup>2,13,15,16</sup>

Exogenous rFVIIa forms complexes with tissue factor (TF) exposed at the site of injury. The subsequent limited amount of thrombin generation enhances both platelet activation and further thrombin generation on the surface of the activated platelets at the site of injury. This localized effect may ensure safety of this drug with no global activation of the coagulation system. Patients with a variety of coagulation deficiencies characterized by an impaired thrombin generation and uncontrollable life-threatening bleedings are reported successfully treated with rFVIIa. However, the efficacy and safety of treatment with rFVIIa outside the current indication should be confirmed in randomized placebo-controlled clinical trials.

This article describes the mechanism of action, characterization, and manufacturing of rFVIIa. Also briefly mentioned are the preclinical characteristics, the pharmacokinetics, and the current clinical evidence for the efficacy and safety of treatment with rFVIIa.

#### **MECHANISM OF ACTION OF rFVIIa**

Coagulation is initiated by formation of a complex of TF and FVIIa at the site of injury (Fig. 1). TF is a membrane-bound glycoprotein expressed on cells in the subendothelium. Tissue injury disrupts the endothelial

TF-expressing cell

IXa prothrombin

IX prothrombin

IX prothrombin

IX prothrombin

IX activated platelet

activated platelet

Figure 1 A cell-based model of coagulation (see text for further explanation).

1. Coagulation is initiated by formation of a complex of TF and FVIIa at the site of injury (Fig. 1).

Anchor Name: Works at the site of injury [Agency FCB Halesway Olga Kooi]

cell barrier that normally separates TF-expressing cells from the circulating blood. Once exposed to the blood, TF serves as a high-affinity receptor for FVIIa. FVIIa alone shows very little proteolytic activity and is only realizing its full enzymatic potential when complexed to TF. The TF-FVIIa complex activates factor X (FX) to factor Xa (FXa), leading to the generation of a small amount of thrombin that activates platelets accumulated at the site of injury. 18 The thrombin formed initially also activates factor XI (FXI) to factor XIa (FXIa), and the cofactors factor V (FV) to factor Va (FVa) and FVIII to factor VIIIa (FVIIIa) in the vicinity of the activated platelets. The activated platelets expose negatively charged phospholipids on their surface and provide the template for further thrombin generation. The TF-FVIIa complex also activates FIX to factor IXa (FIXa). FIXa, FVIIIa, and FVa bind efficiently to the surface of the activated platelet, and further activation of FX occurs via the complex between FIXa and FVI-IIa. The subsequent thrombin burst necessary for formation of a fully stabilized hemostatic fibrin plug mediated by FXa in complex with FVa also occurs on the surface of the activated platelet.

Under normal physiological conditions, roughly 1% of the endogenous factor VII (FVII) circulates as the activated enzyme (FVIIa). 19,20 In vitro experiments with synthetic phospholipid vesicles indicate that at limited concentrations of TF, FVII zymogen may inhibit the activity of FVIIa by competing for binding to TF.21 High plasma levels of rFVIIa after bolus injection overcome the inhibition by zymogen FVII and ensure that most TF molecules are saturated with rFVIIa, providing maximal activation of the coagulation system at the site of injury. In addition, rFVIIa binds with low affinity to the surface of activated platelets and activates FX independently of TF, thereby generating sufficient thrombin to compensate for the lack of FIXa or FV-IIa.<sup>22</sup> The low-affinity binding of rFVIIa to activated platelets explains the need for superphysiological amounts (pharmacological doses) of rFVIIa. rFVIIa does not bind to resting platelets, which explains why systemic coagulation is not observed after rFVIIa infusion. Rather, the effect is localized to the site of injury, where TF is exposed and platelets are activated.

#### **CHARACTERIZATION OF rFVIIa**

## Structure of pdFVIIa

Human plasma FVIIa circulates in the blood as a single chain zymogen of 406 residues. Human plasma FVII consists of four discrete domains: an amino terminal (N-terminal)  $\gamma$ -carboxyglutamic acid (Gla) domain, two epidermal growth factor (EGF)–like domains, and a serine protease domain. The active two-chain enzyme is generated by specific cleavage after Arg152 (Fig. 2).<sup>23</sup>

The primary site of synthesis and posttranslational modifications of the pdFVII molecule is the liver, and the latter includes (1)  $\gamma$ -carboxylation of 10 glutamic acid residues in the N-terminal part of the molecule, (2) N-glycosylation of asparagine residues in positions 145 and 322, and (3) O-glycosylation of serine residues 52 and 60.

#### Structure-Function Relationships of FVIIa

The modular organization of FVIIa allows a spatial separation of the events and properties involved in the function of FVIIa. Very simplified, the following summarizes the structure-function relationships of FVIIa: (1) the N-terminal Gla domain binds to phospholipid surfaces, (2) the C-terminal serine protease domain confers the enzymatic activity, (3) the two EGF-like domains are spacers between them, and (4) all four domains contribute to the interaction with TF.

Calcium ions bind to three domains in FVIIa.24 Without calcium ions FVIIa has virtually no biological activity. Seven calcium sites are located in the Gla domain, and they need to be occupied for FVIIa to bind to cell membranes, 25 such as the surface of the activated thrombocyte,22 and also for a proper interaction with TF. One calcium ion binds to the first EGF-like domain and the serine protease domain, respectively, influencing TF binding and enzymatic activity.<sup>26,27</sup> Under in vivo conditions, when FVIIa is saturated with calcium ions, the binding to membrane-associated TF dramatically increases the rate by which FVIIa generates FXa (and FIXa).<sup>28</sup> The structural changes in FVIIa upon TF association are few,29 as suggested from a structural comparison of free and TF-bound FVIIa. 24,30 Nevertheless, the activity of FVIIa is stimulated upon TF binding. This effect is a consequence of the interaction between the protease domain and TF, whereas the other three domains seem primarily to tether FVIIa to TF.31

#### Structure of rFVIIa

The structural characterization of rFVIIa includes determination of the amino acid sequence and the potential posttranslational modifications. The posttranslational modifications of both pdFVIIa and rFVIIa have been investigated and compared.<sup>32</sup> The enzymatic properties of pdFVIIa and rFVIIa have been evaluated and found to be equivalent.<sup>33</sup>

## AMINO ACID SEQUENCE

Human pdFVIIa and rFVIIa have been compared by sequence analysis.<sup>32</sup> The light and heavy chains of the two molecules were separated, and peptide mapping of the two chains was carried out followed by amino acid

- The TF-FVIIa complex activates factor X (FX ) to factor Xa (FXa ), leading to the generation of a s...

   Anchor Name: Pure rfVIIa [Agency FCB Halesway Olga Kooi]
- 2. Anchor Name: At pharmacological doses rFVIIa directly activates factor X on the surface of activated platelets resulting in a "thrombin [Agency South Africa roseparr @iafrica.com]

Downloaded by: Novo Nordisk A/S. Copyrighted material

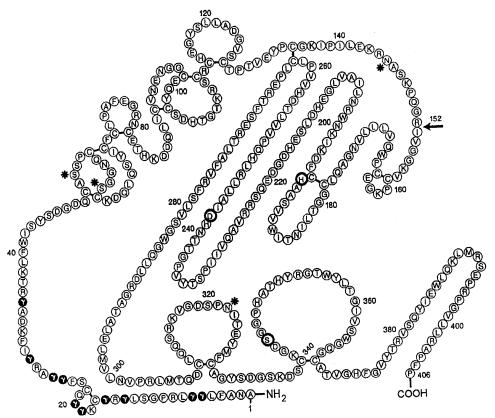
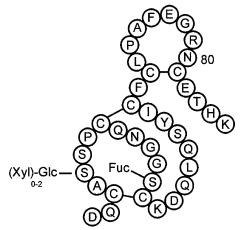



Figure 2 Human coagulation factor VII (FVIIa). FVIIa is a serine protease of 406 residues. The active two-chain enzyme is generated by specific cleavage after Arg152. Posttranslational modifications of the FVII molecule include (1)  $\gamma$ -carboxylation of 10 glutamic acid residues in the N-terminal part of the molecule, (2) N-glycosylation of asparagine residues in positions 145 and 322, and (3) O-glycosylation of serine residues 52 and 60.  $\gamma$ , gamma-carboxyglutamic acid; \*, glycosylation sites;  $\rightarrow$ , activation site; O, catalytic site residues.

sequencing of individual peptide fragments. The peptide mapping and sequencing showed that the two molecules were identical with respect to amino acid sequence<sup>32</sup> and that the sequence was identical to that predicted from the cDNA sequence.<sup>23</sup>

## γ-CARBOXYLATION


The content of  $\gamma$ -carboxylated glutamic acid residues (Gla) in rFVIIa has been compared with that found in human pdFVIIa. <sup>32</sup> In human pdFVIIa, all 10 possible Gla residues (Fig. 2) were fully  $\gamma$ -carboxylated whereas rFVIIa contained 9 fully  $\gamma$ -carboxylated residues and 1 partially (approximately 50%)  $\gamma$ -carboxylated residue (residue no. 35). <sup>32</sup> Carboxylation of glutamic acid 35 appears to be functionally irrelevant. <sup>34</sup>

#### **β-HYDROXYLATION**

The cDNA sequence<sup>23</sup> predicts an aspartic acid residue in position 63 of human pdFVIIa (see Figure 2). By homology to other vitamin K–dependent coagulation proteins, this residue might be  $\beta$ -hydroxylated.<sup>35,36</sup> By the use of a series of different methods, including amino acid analysis, sequencing analysis, and mass spectrometry, it has been shown that neither native pdFVIIa nor rFVIIa contains a  $\beta$ -hydroxy-aspartic acid in position 63.<sup>32</sup>

#### O-GLYCOSYLATION

Human pdFVIIa contains two O-glycosylated sites: serine 52 and serine 60.32,37-39 Both O-glycosylation sites were fully occupied in rFVIIa as well as in pdFVIIa. At serine 52, three different glycan structures



**Figure 3** O-glycosylation. Carbohydrate structures O-linked to serine 52 and serine 60 in recombinant factor VII and in plasma factor VII. Glc, glucose; XyI, xylose; Fuc, fucose.

consisting of glucose, glucose-xylose, or glucose-(xylose)<sub>2</sub> were found in both pdFVIIa and rFVIIa (Fig. 3).<sup>37</sup> The relative amounts of the three O-linked structures differed slightly between pdFVIIa and

rFVIIa. At serine 60, a single fucose was found in both pdFVIIa and rFVIIa (Fig. 3). In a study of the functional role of the O-linked glycosylation of FVIIa by use of site-specific mutants, it was suggested that the O-glycosylations could provide structural elements that are of importance for the association of FVIIa with TF 40

## N-GLYCOSYLATION

Human pdFVIIa contains two potential N-glycosylation sites at asparagine 145 and asparagine 322, and both sites were found to be fully occupied in pdFVIIa and rFVIIa. Only minor quantitative differences were seen in the carbohydrate composition of pdFVIIa and rFVIIa, the most pronounced difference being a higher fucose content and a lower sialic acid content of rFVIIa compared with those for pdFVIIa.32 Later studies have provided a full characterization of the N-linked carbohydrate structures of rFVIIa. 41-44 A total of 15 carbohydrate structures were found, with the major structures being complex biantennary structures with differences in the number of terminal sialic acid residues (Fig. 4).42 Some of the carbohydrate structures have an N-acetylgalactosamine residue at the position where a galactose is usually found. In general, the same carbohydrates were found at both N-glycosylation sites

Figure 4 N-glycosylation. The three major carbohydrate structures N-linked to asparagine 145 and asparagine 322 in recombinant factor VII. Fuc, fucose; GlcNAc, N-acetylglucosamine; Man, mannose; Gal, galactose; GalNAc, N-acetylgalactosamine; NeuNAc, N-acetylneuraminic acid (sialic acid).

of rFVIIa. However, significant differences were found between the two sites in the relative amounts of the carbohydrate structures; for example, the amount of structures with N-acetylgalactosamine was higher at asparagine 322 (30%) compared with its amount at asparagine 145 (7%).<sup>42</sup> Several of the analytic methods used for the carbohydrate characterization have properties in terms of sensitivity and robustness, making them suitable for routine analysis.<sup>41,42</sup> These methods have been used to document reproducible glycosylation of rFVIIa from batch to batch.

#### **MANUFACTURING OF rFVIIa**

#### Expression

The human gene for FVII, located on chromosome 13, is composed of eight exons (coding regions). A cDNA for the coding region of human FVII was isolated from a liver gene library and characterized as previously described by Hagen and coworkers.<sup>23</sup> rFVII was obtained from a mammalian expression system by the use of BHK cells. For details on transfection of BHK cells with human FVII cDNA, see Berkner et al.<sup>45</sup>

A master cell bank (MCB) has been established from the transfected cells and stored in the vapor phase of liquid nitrogen to ensure the stability of the cells during long-term storage. These BHK cells have been thoroughly tested to ensure the presence of a correct gene construct, sterility, and the absence of mycoplasma and viruses. The cells are capable of a stable expression of FVII for several weeks of cultivation and thus suitable for large-scale production.

A working cell bank (WCB) has been created from a single vial of the MCB, and each rFVIIa production run is initiated by thawing one WCB vial. This ensures that the number of cell generations that has elapsed before each step in the process (e.g., inoculation, harvest, termination) is kept constant for different production runs.

The cells are cultivated in a high cell density bioreactor using microcarriers for cell attachment. After a series of propagation steps (Fig. 5), the culture medium derived from the BHK cells containing secreted single-chain rFVII is collected by a draw and fill process and clarified by centrifugation and filtration before purification.

## Activation of FVII to FVIIa

From the cloning and sequence analysis of human FVII,<sup>23</sup> it is clear that the activation of FVII to FVIIa involves the specific hydrolysis of a single peptide bond between arginine 152 and isoleucine 153 (see Fig. 2). This activation is probably carried out in vivo predominantly by membrane-bound FXa.<sup>46</sup> In the initial phase

of the rFVIIa research project, a series of specific proteases were evaluated. None of the proteases tested could ensure complete cleavage after arginine 152 in rFVII without additional cleavages of other peptide bonds in the molecule. However, during purification of single-chain FVII by ion-exchange chromatography, it was observed that part of FVII was converted into the activated two-chain form.47 Subsequent sequence analysis showed that the two-chain form was identical to pdFVIIa, in other words, specific hydrolysis had occurred between residues 152 and 153. When this process was optimized, rFVII was converted into rFVIIa with almost 100% yield. 32,47 The mechanism of activation is still not fully elucidated. The degree of activation seems to depend on the amount of rFVII loaded per volume of ion-exchange material. Single-chain rFVII has no proteolytic activity by itself,48 but trace amounts of rFVIIa could be generated by cellular proteases or proteases released to the medium, and this rFVIIa could initiate the autoactivation process when rFVII and rFVIIa is concentrated on the ion-exchange column.

#### **Purification**

The purification method for rFVII from the cell culture medium has to ensure the removal of non-rFVII protein and the specific activation of rFVII to rFVIIa. The following purification procedure (see Figure 5) was developed to meet these criteria: (1) culture medium is pH adjusted and loaded onto a Q-Sepharose FF® (Amersham Pharmacia Biotech, Hørsholm, Denmark) column. This step mainly functions to concentrate the protein. (2) Virus inactivation is ensured by treatment with a detergent. (3) rFVII is then loaded on an immunoaffinity column.32 This step very efficiently purifies rFVII because both the binding of rFVII to the column and the elution of rFVII from the column is specific for the rFVII protein. (4) The final purification and the complete activation of rFVII to rFVIIa is carried out by the use of two anion-exchange chromatography steps. The purified and activated rFVIIa bulk drug substance is formulated into a solution of the composition given in Table 1. This solution is dispensed into vials and freeze dried. The final drug product, Novo-Seven®, exists in three presentations containing 1.2 mg, 2.4 mg, and 4.8 mg of rFVIIa, respectively.

## PRECLINICAL DEVELOPMENT

## **Preclinical Efficacy and Safety**

The hemostatic effect of rFVIIa has been verified in hemophilic dogs and by warfarin-induced bleeding in rats. rFVIIa (dose range 50 to 220 µg/kg body weight [b.w.]) was able to correct the cuticle bleeding time in dogs with hemophilia A or B.<sup>49</sup> In cases of warfarin-

Downloaded by: Novo Nordisk A/S. Copyrighted material.

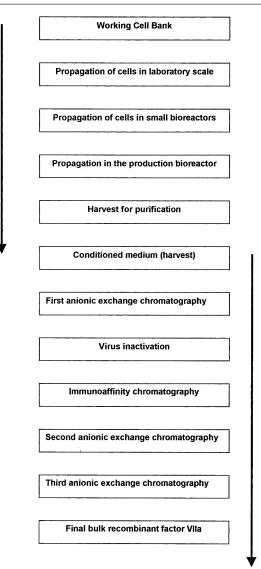



Figure 5 Manufacturing of rFVIIa. A WCB has been created from a MCB and is cultivated in a high cell density bioreactor using microcarriers for cell attachment. After a series of propagation steps the culture medium is collected by a draw and fill process and clarified by centrifugation and filtration before purification. During the purification process single-chain rFVII is autoactivated into the two-chain form during the final anion-exchange chromatography.

induced bleeding in rats, the bleeding from the tail cuts was partially normalized by 50  $\mu$ g/kg b.w. rFVIIa and fully normalized by 250  $\mu$ g/kg b.w. rFVIIa. However, it should be emphasized that because of the species difference with regard to the binding between TF and FVIIa, no conclusions on optimal doses in humans can be drawn from these experiments.

The theoretical lack of systemic activation after rFVIIa treatment has been supported by preclinical data. Studies in the standard rabbit stasis model, developed as a thrombosis model in which injury was induced to the vessel wall, have demonstrated that rFVIIa (100 to 1000  $\mu g/kg$  b.w.) or prothrombin complex concentrate (FEIBA; 50 to 100 U/kg; Immuno, Deerfield,

Table 1 Final Formulation of Product before Filling and Freeze Drying

| rFVIIa                               | 0.6 mg/mL  |
|--------------------------------------|------------|
| NaCl (50 mM)                         | 2.92 mg/mL |
| Calcium dichloride dihydrate (10 mM) | 1.47 mg/mL |
| Glycylglycine (10 mM)                | 1.32 mg/mL |
| Tween 80                             | 0.07 mg/mL |
| Mannitol                             | 30 mg/mL   |

IL) caused clot formation at the site of injury after 30 minutes of stasis (restricted blood flow). This reflects the normal pharmacological response to tissue injury. Three hours after administration, rFVIIa caused no change in platelet count or fibrinogen concentration. Furthermore, no changes were noted in antithrombin levels, nor was there any evidence of generation of soluble fibrin monomers, as judged by an ethanol gelation test. In contrast, FEIBA caused a significant dosedependent decrease in platelets and fibrinogen, suggesting a general activation of the coagulation system. Administration of rFVIIa (100 to 300 µg/kg) to rabbits previously exposed to endotoxin did also not result in any significant hematologic changes (i.e., decreased leukocyte count, platelet count, or fibrin monomers), compared with rabbits treated with endotoxin alone.<sup>51</sup>

#### **CLINICAL DEVELOPMENT**

#### **Pharmacokinetics in Patients**

rFVIIa pharmacokinetics has been studied in adult and pediatric hemophilia patients, as well as in adults with acquired FVII deficiency (i.e., healthy adult volunteers pretreated with acenocoumarol and patients with liver cirrhosis).<sup>52–56</sup> The clearance and half-life values (range 2.4 to 3.2 hours) of rFVIIa after bolus administration were in the same range in the adult populations studied. Pediatric patients with hemophilia had a shorter half-life (1.3 hours) and a higher clearance than the adults with hemophilia had.<sup>54,56</sup>

## Efficacy Trials in Congenital or Acquired Hemophilia Patients with Inhibitors

Since 1988, the therapeutic efficacy and safety of rFVIIa in hemophilia patients with inhibitors have been investigated in a number of international clinical studies. The largest trial to date is the Compassionate Use Study (n = 148),5-7,11 including hemophilia A and B patients, acquired hemophilia patients, and FVII-deficient patients. The purpose of the program was to treat patients with life- or limb-threatening bleeds when all other therapeutic alternatives had been exhausted. In

the Dose Finding Study<sup>3</sup> (n = 78), a randomized, double-blind, multicenter study including hemophilia patients with inhibitors and joint, muscle, and mucocutaneous bleeding episodes were treated with rFVIIa (35 or 70 µg/kg). Another randomized, double-blind, multicenter, dose-finding study, the Surgery Study<sup>2</sup> (n = 29), included hemophilia patients with inhibitors who had been scheduled for elective minor or major surgery. Finally, a multicenter Home Treatment Study<sup>1</sup> (n = 60) of hemophilia patients with inhibitors documented and emphasized the benefits of early initiation of therapy with rFVIIa. All studies showed that treatment with rFVIIa is effective (80 to 90%) and safe in the dose range of 35 to 120 µg/kg, with a recommended dose of 90 µg/kg to be given as a bolus dose and repeated after 2 hours. When more than two doses are necessary to ensure and maintain hemostasis for minor or moderate bleeds, the dose-interval may be prolonged from 2 to 6 hours, depending on the size and severity of the bleed. Successful surgical treatment regimens and treatment of major life- or limb-threatening bleeds, however, necessitates administration of rFVIIa every 2nd hour for the first 24 hours, and then the dose interval may increase over the next 3 days from 2 to 6 hours depending on the type of surgery performed.<sup>15,16</sup> The level of the inhibitor to FVIII or FIX does not influence the efficacy of rFVIIa, nor does rFVIIa evoke an anamnestic response in FVIII- or FIX-deficient patients.<sup>57</sup> Therefore, rFVIIa is a suitable treatment for acute bleeding episodes or control of hemostasis during surgery in hemophilia patients with inhibitors and prior to or during initiation of immune tolerance therapy.<sup>58-60</sup>

#### **Clinical Safety**

Since the first launch (July 1996), more than 180,000 standard doses of rFVIIa have been administered. The frequency of spontaneously reported serious adverse events per treatment episode is 0.6%. The incidence of thrombotic events is less than 0.4%, and 50% of the thrombotic events occurred in patients more than 65 years of age.

## Clinical Data Outside Hemophilia

Case stories have been published on the use of rFVIIa outside hemophilia, including patients with known other abnormalities of the coagulation system, in other words, patients with other congenital or acquired coagulation deficiencies 12,61-63 or platelet defects 64-67 and patients without known abnormalities of the coagulation system but with life- or limb-threatening bleeds, for which all other therapeutic alternatives had been exhausted or no other treatment options currently existed (i.e., trauma patients, acute upper gastrointestinal

bleeding, intracerebral hemorrhage patients, bleeding associated with renal failure).68-73

In FVII-deficient patients (n = 17) successful treatment of 27 spontaneous bleeding episodes and 7 major and 13 minor surgical interventions were reported using a mean dose between 22 and 26 µg/kg b.w.¹² Other reports have confirmed that rFVIIa may be a valuable substitution therapy in severe hereditary FVII deficiency in doses of 20 to 30 µg/kg b.w.¹³,¹⁴

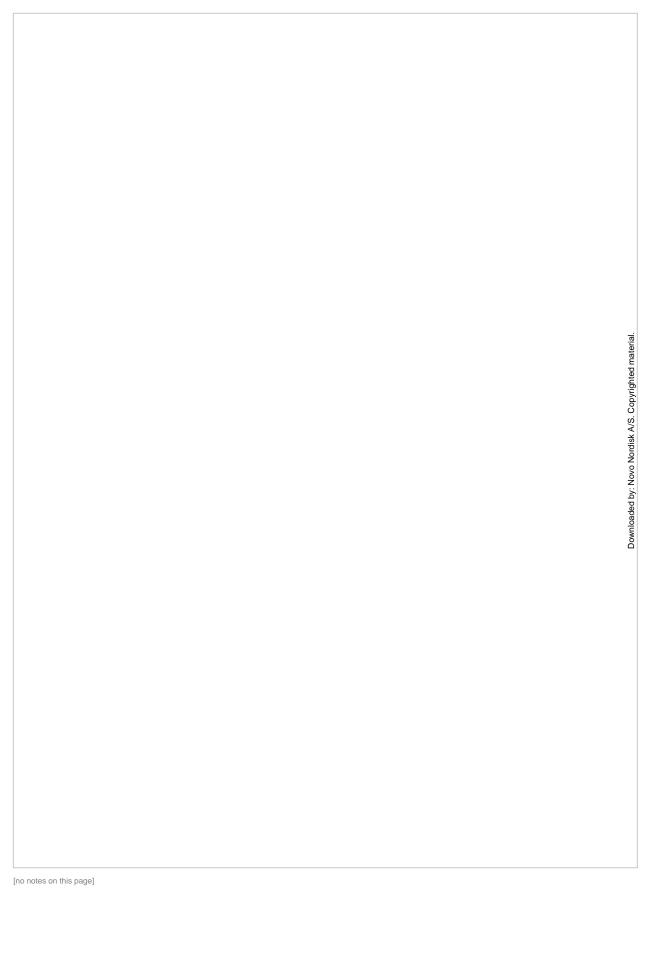
In acquired FVII deficiency associated with vitamin K treatment or coagulopathy due to chronic liver disease, or both, clinical randomized studies in patients treated with acenocoumarol (n = 28) or with liver cirrhosis (n = 10) have shown that the prolonged prothombin time can be reduced by the use of rFVIIa.  $^{52,61,63}$ 

Patients with quantitative or qualitative platelet disorders (i.e., thrombocytopenia, Glanzmann's thrombasthenia, or Bernard-Soulier syndrome) have been reported to be successfully treated with rFVIIa. In thrombocytopenia patients, bleeding time was reduced in 55 episodes of 105 infusions of rFVIIa.  $^{64-66}$  In patients with bleeding during their thrombocytopenia, the bleeding stopped in 6 out of 8 patients.  $^{64}$  In Glanzmann's thrombasthenia, a total of 24 bleeding episodes, including 4 episodes in children, which also included a surgical intervention, were reported to be successfully treated with rFVIIa in dosages of 89 to 116  $\mu$ g/kg b.w. per injection every 2 hours.  $^{66}$ 

While awaiting results from prospective randomized trials, data from patients being treated experimentally with rFVIIa outside the current indications are being entered and monitored in newly established clinical registries (http://www.haemophilia-forum.org/ and http://www.novoseven.com).

#### **REFERENCES**

- Key NS, Aledort LM, Beardsley D, et al. Home treatment of mild to moderate bleeding episodes using recombinant factor VIIa (NovoSeven) in haemophiliacs with inhibitors. Thromb Haemost 1998;80:912–918
- Shapiro AD, Gilchrist GS, Hoots WK, Cooper HA, Gastineau DA. Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery. Thromb Haemost 1998;80:773–778
- 3. Lusher JM, Roberts HR, Davignon G, et al. A randomized, double-blind comparison of two dosage levels of recombinant factor VIIa in the treatment of joint, muscle and mucocutaneous haemorrhages in persons with haemophilia A and B, with and without inhibitors. rFVIIa Study Group. Haemophilia 1998;4:790–798
- Ingerslev J, Freidman D, Gastineau D, et al. Major surgery in haemophilic patients with inhibitors using recombinant factor VIIa. Haemostasis 1996;26(Suppl 1):118–123
- Hay CR, Negrier C, Ludlam CA. The treatment of bleeding in acquired haemophilia with recombinant factor VIIa: a multicentre study. Thromb Haemost 1997;78:1463–1467
- 6. Liebman HA, Chediak J, Fink KI, et al. Activated recombi-


- nant human coagulation factor VII (rFVIIa) therapy for abdominal bleeding in patients with inhibitory antibodies to factor VIII. Am J Hematol 2000;63:109-113
- Arkin S, Cooper HA, Hutter JJ, et al. Activated recombinant human coagulation factor VII therapy for intracranial hemorrhage in patients with hemophilia A or B with inhibitors. Results of the NovoSeven emergency-use program. Haemostasis 1998:28:93–98
- Green D, Lechner KA. A survey of 215 non-haemophiliac patients with inhibitors to factor VIII. Thromb Haemost 1981:45:200-203
- Green D. Complications associated with the treatment of haemophiliacs with inhibitors. Haemophilia 1999;5(Suppl 3):11–17
- Conlan MG, Hoots WK. Disseminated intravascular coagulation and hemorrhage in hemophilia B following elective surgery. Am J Hematol 1990;35:203–207
- Lusher JM. Early treatment with recombinant factor VIIa results in greater efficacy with less product. Eur J Haematol 1998;61(Suppl):7–10
- Mariani G, Testa MG, Di Paolantonio T, Molskov BR, Hedner U. Use of recombinant, activated factor VII in the treatment of congenital factor VII deficiencies. Vox Sang 1999;77:131–136
- Ingerslev J, Knudsen L, Hvid I, et al. Use of recombinant factor VIIa in surgery in factor VII deficient patients. Haemophilia 1997;3:215–218
- Hunault M, Bauer KA. Recombinant factor VIIa for the treatment of congenital factor VII deficiency. Semin Thromb Hemost 2000;26:401–405
- Ingerslev J, Sneppen O, Hvid I, et al. Treatment of acute bleeding episodes with rFVIIa. Vox Sang 1999;77(Suppl 1):42–46
- Ingerslev J. Efficacy and safety of recombinant factor VIIa in the prophylaxis of bleeding in various surgical procedures in hemophilic patients with factor VIII and factor IX inhibitors. Semin Thromb Hemost 2000;26:425-432
- Monroe DM, Hoffman M, Allen G, Roberts H. The factor VII-platelet interplay: effectiveness of recombinant factor VIIa in the treatment of bleeding in severe thrombocytopathia. Semin Thromb Hemost 2000;26:373–377
- Roberts H, Monroe DM, Hoffman M. Molecular biology and biochemistry of the coagulation factors and pathways of haemostasis. In: Beutler E, Lichtman MA, Coller BS, Kipps, TJ, Seligsohn U, eds. Williams' Hematology. New York: Mc-Graw-Hill; 2001:1409–1434
- Morrissey JH, Macik BG, Neuenschwander PF, Comp PC. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 1993;81:734–744
- Wildgoose P, Nemerson Y, Hansen LL, et al. Measurement of basal levels of factor VIIa in hemophilia A and B patients. Blood 1992;80:25–28
- van't Veer C, Golden NJ, Mann KG. Inhibition of thrombin generation by the zymogen factor VII: Implications for the treatment of hemophilia A by factor VIIa. Blood 2000;95: 1330–1335
- Monroe DM, Hoffman M, Oliver JA, Roberts HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol 1997;99:542–547
- Hagen F, Gray L, O'Hara P, et al. Characterization of a cDNA coding for human factor VII. Proc Natl Acad Sci USA 1986;83:2412–2416

- Banner D, D'Arcy A, Chene C, et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996;380:41–46
- Persson E, Petersen LC. Structurally and functionally distinct Ca<sup>2+</sup> binding sites in the gamma-carboxyglutamic acid-containing domain of factor VIIa. Eur J Biochem 1995;234: 293–300
- Persson E, Olsen OH, Østergaard A, Nielsen LS. Ca<sup>2+</sup> binding to the first epidermal growth factor-like domain of factor VIIa increases amidolytic activity and tissue factor affinity. J Biol Chem 1997; 272:19919–19924
- Wildgoose P, Foster D, Schiødt J, et al. Identification of a calcium site in the protease domain of human blood coagulation factor VII: evidence for its role in factor VIIa-tissue factor interaction. Biochemistry 1993;32:114–119
- Bom VJJ, Bertina RM. The contributions of Ca<sup>2+</sup>, phospholipids and tissue factor apoprotein to activation of human blood coagulation factor X by activated factor VII. Biochem J 1990;265:327–336
- Freskgard PO, Olsen OH, Persson E. Structural changes in factor VIIa induced by Ca<sup>2+</sup> and tissue factor studied using circular dichroism spectroscopy. Protein Sci 1996;5: 1531–1540
- Pike ACW, Brzozowski AM, Roberts SM, Olsen OH, Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci USA 1999;96:8925–8930
- Ruf W, Dickinson CD. Allosteric regulation of the cofactordependent serine protease coagulation factor VIIa. Trends Cardiovasc Med 1998:8:350–356
- Thim L, Bjoern S, Christensen M, et al. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry 1988;27:7785–7793
- Lund-Hansen T, Petersen LC. Comparison of enzymatic properties of human plasma FVIIa and human recombinant FVIIa. Thromb Haemost 1987;58:270. Abst
- Persson E, Nielsen LS. Site-directed mutagenesis but not gamma-carboxylation of Glu-35 in factor VIIa affects the association with tissue factor. FEBS Lett 1996;385:241–243
- Drakenberg T, Fernlund P, Roepstorff P, Stenflo J. Beta-hydroxyarspartic acid in vitamin K-dependent protein C. Proc Natl Acad Sci USA 1983;80:1802–1806
- McMullen BA, Fujikawa K, Kisiel W. The occurrence of beta-hydroxyaspartic acid in the vitamin K-dependent blood coagulation zymogens. Biochem Biophys Res Commun 1983;115:8–14
- Bjoern S, Foster D, Thim L, et al. Human plasma and recombinant factor VII. Characterization of O-glycosylations at serine 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. J Biol Chem 1991;266:11051–11057
- Kentzer EJ, Buko A, Meno G, Sarin VK. Carbohydrate composition and presence of a fucose-protein linkage in recombinant human pro-urokinase. Biochem Biophys Res Commun 1990:171:401–406
- Nishimura H, Kawabata S, Kisiel W, et al. Identification of a disaccharide (Xyl-Glc) and trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem 1989;264: 20320-20325
- Lino M, Foster DC, Kisiel W. Functional consequences of mutations in Ser-52 and Ser-60 in human blood coagulation factor VII. Arch Biochem Biophys 1998;352:182–192

- Klausen NK, Kornfelt T. Analysis of the glycoforms of human recombinant factor VIIa by capillary electrophoresis and high-performance liquid chromatography. J Chromatogr A 1995;718:195–202
- Klausen NK, Bayne S, Palm L. Analysis of site-specific asparagine-linked glycosylation of recombinant human coagulation factor VIIa by glycosidase digestions, liquid chromatography, and mass spectrometry. Mol Biotechnol 1996;9: 195–204
- Palm L, Roepstorff P, Klausen NK. Elucidation of N-linked carbohydrate structures in recombinant human factor VII (rFVIIa) by combination of MALDI-MS and glycosidase digestions. XVIII International Carbohydrate Symposium, July 1996, Milano, Italy 1996
- 44. Weber PL, Kornfelt T, Klausen NK, Lunte SM. Characterization of glycopeptides from recombinant coagulation factor VIIa by high-performance liquid chromatography and capillary zone electrophoresis using ultraviolet and pulsed electrochemical detection. Anal Biochem 1995;225:135–142
- Berkner K, Busby S, Davie E, et al. Isolation and expression of cDNAs encoding for human factor VII. Cold Spring Harb Symp Quant Biol 1986;51:531–541
- Butenas S, Mann KG. Kinetics of human factor VII activation. Biochemistry 1996;35:1904–1910
- 47. Bjoern S, Thim L. Activation of coagulation factor VII to VIIa. Res Discl 1986;269:564–565
- Wildgoose P, Berkner K, Kisiel W. Synthesis, purification, and characterization of an Arg152Glu site-directed mutant of recombinant human blood clotting factor VII. Biochemistry 1990;29:3413–3420
- Brinkhous KM, Hedner U, Garris JB, Diness V, Read MS. Effect of recombinant factor VIIa on the hemostatic defect in dogs with hemophilia A, hemophilia B, and von Willebrand disease. Proc Natl Acad Sci USA 1989;86:1382–1386
- Diness V, Lund-Hansen T, Hedner U. Effect of recombinant human FVIIA on warfarin-induced bleeding in rats. Thromb Res 1990:59:921–929
- Diness V, Bregengaard C, Erhardtsen E, Hedner U. Recombinant human factor VIIa (rFVIIa) in a rabbit stasis model. Thromb Res 1992;67:233–241
- Erhardtsen E, Nony P, Dechavanne M, et al. The effect of recombinant factor VIIa (NovoSeven) in healthy volunteers receiving acenocoumarol to an International Normalized Ratio above 2.0. Blood Coagul Fibrinolysis 1998:9:741–748
- Lindley CM, Sawyer WT, Macik BG, et al. Pharmacokinetics and pharmacodynamics of recombinant factor VIIa. Clin Pharmacol Ther 1994;55:638–648
- 54. Hedner U, Kristensen H, Berntorp E, et al. Pharmacokinetics of rFVIIa in children. Haemophilia 1998;4:355 (Abst)
- Girard P, Nony P, Erhardtsen E, et al. Population pharmacokinetics of recombinant factor VIIa in volunteers anticoagulated with acenocoumarol. Thromb Haemost 1998;80: 109–113
- Erhardtsen E. Pharmacokinetics of recombinant activated factor VII. Semin Thromb Hemost 2000;26:385–391
- Johannessen M, Andreasen RB, Nordfang O. Decline of factor VIII and factor IX inhibitors during long-term treatment with NovoSeven. Blood Coagul Fibrinolysis 2000;11:239–242
- Brackmann HH, Effenberger W, Hess L, Schwaab R, Oldenburg J. Immune tolerance induction: a role for recombinant activated factor VII (rFVIIa)? Eur J Haematol 1998;61(Suppl 63):18–23
- 59. Kobelt R. A Swiss treatment concept for the use of rFVIIa in the context of immune tolerance therapy. In: Scharrer I, von

- Depka Prondzinski M, eds. Recombinant Factor VIIa. Current and Future Indications. Frankfurt/Main, Germany: Weller Verlag; 2000:50–57
- Manno SC. Treatment options for bleeding episodes in patients undergoing immune tolerance therapy. Haemophilia 1999;5(Suppl 3):33–41
- Bernstein DE, Jeffers L, Erhardtsen E, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 1997;113:1930–1937
- Holm M, Andreasen R, Ingerslev J. Management of bleeding using recombinant factor VIIa in patients suffering from bleeding tendency due to a lupus anticoagulant-hypoprothrombinemia syndrome. Thromb Haemost 1999;82:1776– 1778
- Muleo G, Santoro R, Iannaccaro PG, et al. Small doses of recombinant factor VIIa in acquired deficiencies of vitamin K dependent factors. Blood Coagul Fibrinolysis 1999;10: 521–522
- Kristensen J, Killander A, Hippe E, et al. Clinical experience with recombinant factor VIIa in patients with thrombocytopenia. Haemostasis 1996;26(Suppl 1):159–164
- Peters M, Heijboer H. Treatment of a patient with Bernard-Soulier syndrome and recurrent nosebleeds with recombinant factor VIIa. Thromb Haemost 1998;80:352 Lett
- 66. Poon MC, Demers C, Jobin F, Wu JW. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood 1999;94:3951–3953

- Meijer K, Sieders E, Slooff MJH, de Wolf JTM, van der Meer J. Effective treatment of severe bleeding due to acquired thrombocytopathia by single dose administration of activated recombinant factor VII. Thromb Haemost 1998;80:204–205
- 68. Martinowitz U, Kenet G, Onaca MD, et al. New treatment of uncontrolled hemorage in trauma/surgical patients: induction of local hypercoagulation. American Association for the Surgery of Trauma 60th Annual Meeting, San Antonio, Texas, Session IX, 2000; Abst 48
- Vlot AJ, Ton E, Mackaay AJC, Kramer MHH, Gaillard CAJM. Treatment of a severely bleeding patient without preexisting coagulopathy with activated recombinant factor VII. Am J Med 2000;108:421–422
- Liem AKSE, Biesma DW, Ernst SMPG, Schepens MAAM. Recombinant activated factor VII for false aneurisms in patiens with normal haemostatic mechanisms. Thromb Haemost 1999;82:150–151
- Moisescu E, Ardelean I, Simion I, Muresen A, Ciupan R. Recombinant factor VIIa treatment of bleeding associated with acute renal failure. Blood Coagul Fibrinolysis 2000;11: 575–577
- Revesz T, Arets B, Bierings M, van den Bos C, Duval E. Recombinant factor VIIa in severe uremic bleeding. Thromb Haemost 1998;80:353 Lett
- Rice KM, Savidge GF. NovoSeven (recombinant factor VIIa) in centeral nervous system bleeds. Haemostasis 1996;26 (Suppl 1):131–134

